

Welcome to WikiContrib!

Contents:

	Intro

	Usage
	Intro to Queries

	Query Creation

	Viewing / Updating filters

	Viewing results

	Updating Queries

	Internal Working

	Installation
	Backend

	Frontend

	Contributing
	Reporting bugs

	Contributing to the repo

Intro

WikiContrib is a contribution data visualization tool which can be used to view
a developer’s contributions from different contributing platforms to the Wikimedia
Foundation. Wikimedia Scholarship Committee can use this tool to decide who gets
scholarship to Wikimedia events, and Wikimedians can also share their contributions
profile with peers and employers.

Currently, it fetches the contributions from

	Gerrit

	Phabricator

	Github

It visualizes the data in form of graphs and user contribution calendar. The tool
can also be used by anyone to view the contributions of any contributor in the Wikimedia Foundation.

Note

Please note that all functionalities associated with the features allowing users to add multiple contributors details at once has been disabled. If these features are
important to you, you can reach out on Github [https://github.com/wikimedia/wikicontrib] or WikiContrib talk page [https://meta.wikimedia.org/wiki/Talk:WikiContrib]

Usage

As specified, WikiContrib is used in visualizing the contributions of Wikimedians in the form of graphs and user contribution calendar. Let’s start the discussion with how to use the tool first.

Intro to Queries

A Query is initiated whenever a user searches for the contributions of a single or a group of Wikimedians. Each query is uniquely identified by a user-friendly hash.
Each query has a group of filters associated with it. There are two filters in a query:

	From time.

	Time Range.

From time: The user can get all the commits from a specified time (i.e month and year).

	Time Range: From the specified From time, the user needs to give a range

	of time to which he/she want to fetch the details with the maximum being one year
(i.e last one year, last one month or last 6 months, etc).

Query Creation

To create a query, the user needs to add the data (contributors full name, usernames of Gerrit, Phabricator, and Github) to the query. The user can add the data in two
different ways:

	Entering usernames manually.

	Adding usernames in bulk.

Entering usernames manually:

Home page

[image: _images/home.png]
Whenever the user goes to the home page, the above page will be displayed.
In the above, the table has four columns. They are:

	Fullname

	Gerrit Username

	Phabricator Username

	Github Username

The user needs to fill the above four details of the corresponding Wikimedian whom the user wants to view the contributions of. Gerrit Username is used to fetch the data from Gerrit APIs, same with Phabricator and Github usernames.
The details fetched from the APIs are associated with a common name i.e Fullname of the user.
Fullname is also used in searching the users, we will discuss the searching in the later part of the doc.

There is an option provided to add usernames of multiple Wikimedians.
By clicking on Add Row button, another empty row is added to the DOM. Similarly,
the user can add any number of rows and fill the usernames into them. One of the cool things about the tool is the usernames the user entered will be cached in the user device cache. So, even if the user refreshes or closes the page, the details will not be lost! the user can fill a few usernames at some time, close the page and re-open it at some other time and add few other usernames. The user can also clear the cached data. Clicking the Reset button clears all the data he/she entered into the tool.

Adding Usernames in Bulk:

Entering usernames of tens of users is easy. But what if the user wants to know the contributions of hundreds of Wikimedians? It will take a lot of time and work to fill them manually to the tool. So, there is also an option to upload all the usernames in a CSV file. On clicking the toggle bar with text “Bulk Add”,
the user will be provided with an option to upload a CSV file. If the user is uploading a CSV file, he/she needs to fill the data in the file in a particular format.

The CSV format is:

[image: _images/csv.png]
Once the data is provided, (either entered manually or using a CSV file),
The user can click the search button and this initiates a request to the server. The tool first verifies that the usernames provided belong to the same user and if not, warns the user of the mismatch. The user can decide whether to proceed or to crosscheck the provided usernames. If the usernames match or if the user decides to proceed, the tool then makes API requests to Gerrit, Phabricator, Github APIs.
Once all the required details are fetched, it redirects to a URL /<query_hash_code>.
Now the user can see the graphs of user contributions vs time along with a calendar
that displays the contributions.

Note: query_hash_code is the hash-code generated by the query, the query
can be accessed at any point in time using the hash-code.

User contribution calendar looks like:

[image: _images/calendar.png]
If the user clicks on a specific date in the above calendar, all the commits made
by the Wikimedian along with the platform will be displayed.

Hovering on the info button gives a popup with an intro paragraph about the tool.

Viewing / Updating filters

The user can view the results by following the above process of creating a query,
there are also few filters displayed along with the result. The filters can be updated.
Updating the current filters performs an API request and fetches the contributions of
the Wikimedian according to the filters the user provided.

There is also an option to reset the filters to the default ones. Filters are associated with the Query. The contributions of all the Wikimedians are fetched according to the filters the user changed!

Note: Presently, the user can see all the contributions of any Wikimedian for
the past one year (at maximum).

Viewing results

	Once the contributions of the user are fetched, these things are displayed:

	
	Graph of user contributions in Gerrit.

	Graph of user contributions in Phabricator.

	Graph of user contributions in Github.

	A simple calendar that displays all the user contributions for the period you provide (similar to Github green squires).

At a time, the contributions of a single user are displayed. There are arrows
provided to get the details of the next and previous user to the current user.
There is also an input box provided. If you want to get the contributions of a
specific user, you can search the fullname of the user in the search box.
It displays the recommendations of the top 50 matching users.

Updating Queries

Once a user creates a query with the usernames of a set of Wikimedians and at a
later point of time, if he/she wants to know the contributions of another Wikimedian,
instead of creating a new query for a single Wikimedian, he/she can update the
query and add the corresponding usernames.

There are four main different types of updates possible:

	Initially a CSV file can be provided, another CSV file can be provided while updating the query.

	Initially a CSV file can be provided, a set of usernames of Wikimedians can be provided manually while updating the query.

	Initially a set of usernames of Wikimedians are provided manually, a CSV file can be provided while updating the query.

	Initially a set of usernames of Wikimedians are provided manually, another set of usernames of Wikimedians are provided manually while updating the query.

Note

Please note that all functionalities associated with the features allowing users to add multiple contributors details at once has been disabled. If these features are
important to you, you can reach out on Github [https://github.com/wikimedia/wikicontrib] or WikiContrib talk page [https://meta.wikimedia.org/wiki/Talk:WikiContrib]

Internal Working

In the Usage section, we discussed the architecture and how to use the tool. Let’s extend the discussion
with a complete note of how the tool works internally.

We shall start our discussion with the schema diagram of the tool’s database.

[image: _images/schema.jpeg]
As you can see above, there are four tables:

	Query.

	Query users.

	Query Filters.

	List commits.

Query has the data regarding the hash, created time etc. The usernames of the Wikimedians that the user provided during the query creation will be stored in Query users table. All the filters associated with the query will be stored in Query Filters table.

Whenever a user attempts to create or update a query (change the usernames), we first make sure that the usernames belong to the same user by calling matchFullNames view and returning a response that helps us decide whether to proceed or to first warn the user of the mismatch.
Let’s dig deep into the working of matchFullNames view.

This view uses asyncio and aiohttp to perform API requests in a parallel manner. It formats the submitted usernames, creates an event loop, and passes the event loop to concurrent_get_fullnames where we create three co-routines for Phabricator, Gerrit, and Github and attempts fetching the contributors fullnames on these platforms through get_full_name.
(If you are not familiar with event loops and co-routines, they are used to perform threading programmatically, you can get more information about them here [https://docs.python.org/3/library/asyncio.html]).

The above code adds three tasks to the event loop. Each of the tasks fetches the contributor’s fullname on one of the three platforms.
These are parallel because, let’s assume there are two tasks task1 and task2, initially, the loop started executing task1. If task1 performs any API request, it has to wait till the response is received to proceed further. So, whenever the task1
performs an API request, asyncio stores the state of task1 and starts executing task2. When the response to the task1 is received, it stores the current task and executes the task1 further.
When we are done attempting to fetch the fullnames, the results are passed to fuzzyMatching which uses fuzzy matching to figure out the probability that the usernames belong to the same user. the result of this matching is then returned as HTTP response.

If the usernames belong to the same user or if the user ignores the warning when usernames don’t belong to the same user, we then query the server. Initially, a class named AddQueryUser view is triggered. The view creates a Query with a hash that is based on the usernames submitted
and adds the provided usernames data to the query. This also creates a default set of filters and returns a redirect to /<hash> URL.

The URL triggers DisplayResult view. This view gets the necessary query data from the database and passes it on to getDetails where we decide whether to perform external API requests, fetch the details and cache the fetched data in the database or to return the already cached data
from the database depending on whether we have cached that particular query in the past and if the query is not more than a day old. It also formats the data and returns the data to the browser as an HTTP response.
Let’s dig deep into the working of DisplayResult view.

This view also uses asyncio and aiohttp to perform API requests in a parallel manner. There are few constraints with the existing Phabricator, Gerrit, and Github APIs. Both Phabricator and Gerrit can not return the count of contributions made by a particular user. They will return the
contributions made by the user in the form of a list of JSON objects. The good thing about Gerrit is it returns contributions of all the users with a single API request. But in the case of phabricator and Github, they will paginate the results with a max of 100 contributions on each
page. For example, if a user performed 1000 different actions in phabricator or Github, then 10 API requests are to be made to get all the actions performed. Another constraint is that all the API requests for both Phabricator and Github are to be made sequentially. The API requests can not
be parallel because each page has to be requested with a reference(except the first one). The reference to a page n will be provided on page n-1. Suppose if you have to get the commits of the user in the 7th page, you have to request the 6th page first to get the reference to the
7th page. To get the 6th page you have to request the 5th page and so on.

So, even if I want to get some page n you have to get all the details from 1 to n.

In this tool, all the contributions of the user from Gerrit are being fetched. But in the case of phabricator, two kinds of tasks are taken into count:

	Tasks authored by the user.

	Tasks assigned to the user.

For Github, we are only concerned with the contributors commits.

DisplayResult view gets all the data required to perform the external API requests and calls another function getDetails. This function takes the data and formats it according to the requirement. It also creates a new asyncio event loop.
This loop is first passed to get_full_names where we create three co-routines for Phabricator, Gerrit, and Github and attempts fetching the contributor’s fullnames on these platforms through get_full_name.

When we are done attempting to fetch the fullnames, the results are passed to fuzzyMatching (just like in matchFullNames) which uses fuzzy matching to figure out the probability that the usernames belong to the same user.

After this, we call get_cache_or_request passing it several arguments some of which are query and the same event loop used to fetch the fullnames not long ago.

Inside get_cache_or_request, if the query exists in the cache and it is not older than one day, we fetch it from the cache and pass it to format_data where the data is properly formatted before finally returning it.
If the query is not in the cache or is more than a day old in the cache, we call get_data where we create four co-routines to fetch the contributions data for the different platforms (two co-routines belong to Phabricator).

async def get_data(urls, request_data, loop, gerrit_response, phab_response,
 github_response, phid, full_names):
 tasks = []
 async with ClientSession() as session:
 tasks.append(loop.create_task((get_gerrit_data(urls[1], session,
 gerrit_response))))
 tasks.append(loop.create_task((get_task_authors(urls[0], request_data
 , session, phab_response, phid))))
 tasks.append(loop.create_task((get_task_assigner(urls[0], request_data,
 session, phab_response))))
 tasks.append(loop.create_task((get_github_data(urls[2], request_data[3]
 , session, github_response, full_names))))
 await asyncio.gather(*tasks)

The above code adds four tasks to the event loop. Each of the tasks fetches contributions data through the various APIs.

	get_gerrit_data(): fetch contributions user from gerrit.

	get_task_authors(): fetch tasks authored by a user in phabricator.

	get_task_assigner(): fetch tasks assigned to a user in phabricator.

	get_github_data(): fetches contributions to a given set of Wikimedia repositories on github.

get_gerrit_data() perform a single API request and gets all the details of the users.
get_task_authors() and get_task_assigner() gets the data but, as discussed above, phabricator APIs are paginated. So, these two co-routines have to
request the data again and again, until there are no more pages left behind to request.
``get_github_data() creates additional co-routines to get the contributions to a given set of repositories in a parallel manner.

Once the entire data are received, it is formatted and cached in the table List Commits. Apart from storing them in databases, the commits that meet the requirement of all the Query filters are taken and the response is returned to the user.
For the sake of performance, the contributions of at the max. of past one year are being requested.

Whenever the filters or usernames of a query are changed, then these whole processes are repeated.

The view GetUserCommits returns all the commits of a user on a particular date.

sequence diagram:

[image: _images/sequence.jpeg]
If you want to know more about the tool, you can refer to the API documentation from here [https://documenter.getpostman.com/view/12264092/T1LFmpTP].

Installation

Initially, clone the repo with the command.

git clone https://github.com/wikimedia/WikiContrib.git

The tool has two different components(Backend and Frontend). Each of them has its installation instructions.

Backend

Now, if you type command ls (for linux) or dir (for windows), you can see a directory named WikiContrib. Go inside the directory using the command cd WikiContrib. There will be two directories in it:

	backend

	frontend

If you go inside backend directory(use command cd backend). You can find another directory named WikiContrib. It is the main project backend directory.
cd into WikiContrib and follow the instructions here [https://github.com/wikimedia/WikiContrib/blob/master/backend/WikiContrib/Install.md/] to install the backend .

Frontend

You will see two directories in the project’s root directory:
1. backend
2. frontend

If you go inside frontend directory(use command cd frontend). You can find another directory named WikiContrib-Frontend. It is the main project directory.
cd into WikiContrib-Frontend and follow the instructions here [https://github.com/wikimedia/WikiContrib/blob/master/frontend/WikiContrib-Frontend/Install.md/] to install the frontend .

Contributing

Reporting bugs

If you find any bugs or issues while using the app. Feel free to report them here [https://github.com/wikimedia/WikiContrib/].

If you are reporting a new issue, please provide these details:

	Title (Describe the entire issue in a single sentence).

	Description (Write more about the issue).

	How to reproduce the issue?
Provide some screenshots (if possible).

Contributing to the repo

Thanks for choosing the project to contribute. You can install the repo locally through the installation instructions provided in the “Installation” section [https://github.com/wikimedia/WikiContrib#getting-started]. You can find the list of issues in the tool here [https://github.com/wikimedia/WikiContrib/issues].
You can choose an issue and fix it. Keep your master branch updated and pull all the changes before making a PR.

Note: If you are updating the backend after you make some change, you can check if all the tests are passing using the command:

python manage.py test

Index

 _static/ajax-loader.gif

_images/schema.jpeg
Queries

pk: IntegerField (Primary Key)
hash_code: CharField(64)

file: BooleanField

csv_file: FileField

created_on: DateTimeField

Query users

pk: IntegerField (Primary Key)
query: IntegerField (Foreign Key)
fullname: CharField
gerrit_username: CharField
phabricator_username: CharField

github_username: CharField

Query Filters

pk: IntegerField (Primary Key)
query: IntegerField (Foreign Key)
start_time: DateTimeField
end_time: DateTimeField

status: CharField

List Commits

pk: IntegerField (Primary Key)
query: IntegerField (Foreign Key)
user_hash: CharField

heading: CharField (200)
platform: CharField (20)
created_on: DateTimeField
createdStart: DateTimeField
createdEnd: DateTimeField
redirect: CharField (200)
status: CharField (20)

owned: BooleanField

assigned: BooleanField

_images/sequence.jpeg
Usernames Check

Request to external APIs

Usernames Check Response

Response

Create Query

Request to external APIs

et

Format, Cache and Return response

Response

Usernames Check

Request to external APIs

Usernames Check Response

Response

Change Usernames

Request to external APIs

Format, Cache and Return response

Response

Change Time Filter

Request to external APIs

Format, Cache and Return response

;
]
I

Response

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/calendar.png
TOTAL CONTRIBUTIONS

2264

Aug Sep Oct Nov Dec

Aug

less My

_images/csv.png
fullname
userl
user2
user3

Gerrit
user_gerrit
user2_gerrit
user3_gerrit

Phabricator
user1_phab
user2_phab
user3_phab

Github
user1_github
user2_github
user3_github

_images/home.png
Info Bumn

Source Code Link (—//

Talk Page Link

® WikiContrib

Visualize your technical contributions or a fellow Wikimedian's to Wikimedia projects!

Full name Gerrit username Phabricator usernan Github username

Bulk Add Toggle Search Button

Built with @ by Rammanojpotla, Raymond Ndibe, Srishti Sethi, and Suchakra Sharma

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to WikiContrib!

 		
 Intro

 		
 Usage

 		
 Intro to Queries

 		
 Query Creation

 		
 Viewing / Updating filters

 		
 Viewing results

 		
 Updating Queries

 		
 Internal Working

 		
 Installation

 		
 Backend

 		
 Frontend

 		
 Contributing

 		
 Reporting bugs

 		
 Contributing to the repo

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

